Geometric Construction of Certain Highest Weight Modules
نویسندگان
چکیده
منابع مشابه
Highest-weight Theory: Verma Modules
We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...
متن کاملCharacterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.
متن کاملLaplace transform and unitary highest weight modules
The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.
متن کاملGeometric Construction of Highest Weight Crystals for Quantum Generalized Kac-moody Algebras
We present a geometric construction of highest weight crystals B(λ) for quantum generalized Kac-Moody algebras. It is given in terms of the irreducible components of certain Lagrangian subvarieties of Nakajima’s quiver varieties associated to quivers with edge loops. Introduction The 1990’s saw a great deal of interesting interplay between the geometry of quiver varieties and the representation...
متن کاملCriteria for the Unitarizability of Some Highest Weight Modules
For a linear semisimple Lie group we obtain a necessary and sufficient condition for a highest weight module with non-singular infinitesimal character to be unitarizable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1985
ISSN: 0002-9939
DOI: 10.2307/2045856